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Autonomous helicopter flight is a very challenging control problem with high           
dimensional, asymmetric, noisy, nonlinear, non-minimum phase dynamics. In last few years,           
many advances have been made in finding good controllers for helicopters. In this project we               
use actor-critic, model-free algorithm based on deep deterministic policy gradient to learn a             
controller to perform different aerobatic trajectories. It uses simulator provided by 2014            
Reinforcement Learning Competition for Helicopter domain. This approach drastically         
reduces the training time needed to learn controller, while achieving a performance similar             
to the prize winning methods. 

Nomenclature 
x​ t = observation at timestep ​t 
a​ t = action taken at timestep t 
r​ t = reward received at timestep ​t 
s​ t = state at timestep ​t 
R​ t = sum of discounted future reward at timestep ​t 
γ = discounting factor 
Qπ = value function for as  policy functionπ  
θ = parameters of function approximators 
L = loss function 
μ = deterministic policy function mapping states to action 
π = probability distribution mapping states to action 
v​ i = velocity of helicopter ​i ​ direction 
q​ i = quaternion of helicopter around ​i​  axis 

1. Introduction 
 

One of the primary goals of the field of artificial intelligence is the development of intelligent algorithms and                   
autonomous machines. In this project we explore and study one of most promising branch of Artificial Intelligence                 
known as ​Reinforcement Learning​. 
 
Reinforcement learning is a branch of Artificial Intelligence which studies decision making and control, and how a                 
decision making agent can learn to act optimally in a previously unknown environment. Reinforcement Learning is                
inspired by the ways humans learn, by interaction, trial-and-error and associations between what we can see in our                  
environment and the outcomes of the actions we take. 
 
Deep reinforcement learning studies how neural networks can be used in reinforcement learning algorithms, making               
it possible to learn the mapping from raw sensory inputs to raw motor outputs, removing the need to hand-engineer                   
this pipeline. Recently, significant progress has been made in the area of deep reinforcement learning such as  
“Continuous control with Deep Reinforcement Learning” algorithm (Lillicrap et al.​[1]​, 2016 ) that is capable of                
learning policies in continuous action domain whose performance are is competitive to that of algorithms with full                 
access to the dynamics of the domain and its derivatives. 
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The framework of this project is set around the Reinforcement Learning Competition, annual gathering of experts                
and students of Reinforcement Learning that compete in a variety of problem domains. The problem domains                
selected for the Competition usually provide an important and challenging testbed for learning algorithms, and the                
Competition itself helps researchers around the globe compare and understand in more detail how their algorithms                
perform in different problems. 
 
Of the three domains proposed by the Competition we focus on the problem of autonomous helicopter control. This                  
is a well-known problem in the field of Machine Learning that has been tackled by many researchers, and that has a                     
high number of practical applications including rescue tasks, aerial filming, access to hazardous zones and others.​[2] 

 
The helicopter problem has been part of the Competition for several years, and several groups have published their                  
results on it.​[3][4][5] This gives us an opportunity to contrast our results and know what to expect of this Competition.                    
However, we differ in method from many of the previous attempts to solve helicopter problem within Competition.                 
We take a different approach and choose a model-free Reinforcement Learning algorithm with continuous state and                
action space with specified goal of minimizing the experience needed and memory required by the training                
algorithm while also solving the generalized helicopter control problem without using prior knowledge. 
 

2. Reinforcement Learning Challenge 
 
This project is framed in the context of the 2014 Reinforcement Learning Competition (RL-C) held by the RL 
Community. The RL-C is aimed at RL students and researchers, and gives them opportunity to test their algorithms 
in well-defined problem settings, and as well as to create new specifically designed algorithms. All the 
documentation about past RL-Cs can be found in the website ​http://www.rl-competition.org/​ . 
 
2.1 Helicopter Challenge 
 
The Helicopter challenge is based on the work of A. Ng’s group at Stanford University.​[6][7][8][9] The goal of the agent                    
is to control a simulated helicopter and perform a certain task without crashing it. The task can be hovering the                    
helicopter, flying at a constant stable speed or performing other more sophisticated aerobatics like flips and rolls.                 
The simulator is based on a XCell Tempest helicopter, the same model used by the group at Stanford University and                    
shown in figure 1. 

 
 

 
Figure 1.​ XCell Tempest helicopter used by the Stanford University group and simulated domain in RL-C 2014 
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The observation or state space for this problem has 12 continuous variables, corresponding to the X,Y,Z components 
of the helicopter’s velocity, position, angular rate and orientation. The action space has 4 continuous variables: 
longitudinal and latitudinal cyclic pitch and main and tail rotor collective pitch. Range of these variables is given in 
Table 1. 
 

Table 1. Range of Variables in Observation and Action space. 

Variable Range 

Position [-20,20] 

Velocity [-5,5] 

Angular rate [-12.566,12.566] 

Quaternion [-1,1] 

Action [-1,1] 

 
The goal of the Helicopter problem is to be able to safely control the helicopter. A large penalty is given if the 
helicopter moves too far from equilibrium (crashes), which should be avoided at all times. The task is run for 6000 
steps, which simulates 10 minutes of real flight. The simulator provided by the Competition implements 10 different 
tasks of unknown content, that are identified by a (0-9) integer. 
 
The main challenge of the Helicopter domain is its relatively high-dimensional continuous state and action space 
and its noisy nonlinear dynamics. Although we have the physical information needed to characterise a 3D rigid body 
like the helicopter, the noise in the observation and external effects like the wind makes this problem hard to model. 
 
2.2 Software: RL-Glue 
 
All the challenges of the RL-C domains are built on the RL-Glue software package.​[10]​ It is a language and platform 
independent protocol for evaluating reinforcement learning agents with environment programs. RL-Glue separate 
the agent and environment development process so that each can be written in different languages and even executed 
over the Internet from different computers. 

 
Figure 2​. High level diagram of the RL-Glue architecture. The experiment call RL-Glue Core functions, and the 
Core calls the functions provided by the agent and the environment. 
 
The more illustrative description of the agent, environment and experiment can be found in RL-Glue Overview                
Manual.​[11] 
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3. Continuous control with Deep Reinforcement Learning 
 
3.1 Background 
 
An obvious approach to adapting deep reinforcement learning methods such as DQN to continuous domains is to                 
simply discretize the action space. However, this has many limitations, most notably curse of dimensionality: the                
number of actions increases exponentially with the number of degrees of freedom. For example, in our case we have                   
4 dimensional action space with range [-1, 1]. If we discretize our action space at intervals of 0.1 units, it will lead to                       
an discrete action space with dimensionality: 20​4 = 1.6 x 10​5​. The situation gets worse as we want have fine control                     
over action space and finer grained discretization leads to an explosion of the number of discrete actions. 
 
Such large actions spaces are difficult to explore efficiently, and thus successfully training DQN-like networks in                
this context is likely intractable. Also, naive discretization of action spaces needlessly throws away information               
about the structure of the action domain, which may be essential for solving many problems. That is we used a                    
model-free, off-policy actor-critic algorithm using deep function approximators that can learn policies in high              
dimensional, continuous action spaces. This algorithm is based on the deterministic policy gradient (DPG) algorithm               
(Silver et al.​12​, 2014) as described below.  
 
3.2 Algorithm 
 
Reinforcement learning setup consists of an agent interacting with an environment ​E​ in discrete timesteps. At each                 
timestep ​t​ the agent receives an observation ​x​ t​ , takes an action ​a​ t and receives a scalar reward ​r​ t​ . In all the                     
environments considered here the actions as real-valued ​a​ t R​ N​ . We assume the environment is fully observed so        ∈            
s​ t​  = ​x​ t​ . 
 
An agent’s behaviour is defined by a policy, , which maps states to a probability distribution over the actionsπ   

We model it as a Markov decision process with a state space ​S​ , action space ​A = R​ N​ ,​ an initial state(A).π : S → P                       
distribution ​p(s​ 1​ )​ , transition dynamics ​p(s​ t+1​ |s​ t​ ,a​ t​ )​ , and reward function ​r(s​ t​ ,a​ t​ ). 
The return from a state is defined as the sum of discounted future reward with a discounting factor              r(s , )Rt = ∑

T

i=t
γ(i−t)

i ai     

. The action-value function is used in many reinforcement learning algorithms. It describes the expected0, ]γ ∈ [ 1                
return after taking an action ​a​ t​  in state ​s​ t​  and thereafter following policy π :  

 
(s , a ) [R | s , a ]Qπ

t  t = Er  ≥ t, s >t~E, a >t~πi i i t t  t  (1) 
 
Many approaches in reinforcement learning make use of the recursive relationship known as the Bellman equation: 
 

                                  (2)  (s , a ) [r(s , ) γE [Q (s , a )]]Qπ
t  t = Er , s ~Et t+1 t at +  a ~πt+1

π
t+1  t+1  

 
If the target policy is deterministic we can describe it as a function  and avoid the inner expectation:μ : S ← A  
 

                                                  (3)  (s , a ) [r(s , ) γQ (s , μ(s ))]Qμ
t  t = Er , s ~Et t+1 t at +  μ

t+1  t+1  
 

Q-Learning uses greedy policy We consider function approximators parameterized by    (s) arg max  Q(s, ).μ =  a a       θQ

which we optimize by minimizing the loss: 
 

                                              (4)  (θ ) [(Q (s , | θ ) y ) ]L Q = Es ~ρ ,a ~β,r ~Et
β

t t

 
t at

Q −  t
2  

where 
                                                                  (5)y (s , ) Q(s , μ(s )|θ ). t = r t at + γ t+1  t+1

Q    
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It is not possible to straightforwardly apply Q-learning to continuous action spaces, because in continuous spaces                
finding the greedy policy requires an optimization of a​ t at every timestep; this optimization is too slow to be                    
practical with large, unconstrained function approximators and nontrivial action spaces. Instead we used an              
actor-critic approach based on the DPG algorithm (Silver et al.​[12]​, 2014). 
 
The DPG algorithm maintains a parameterized actor function which specifies the current policy by        (s|θ )  μ μ       
deterministically mapping states to a specific action. The critic is learned using the Bellman equation as in         (s, )Q a          
Q-learning. The actor is updated by following the applying the chain rule to the expected return from the start                   
distribution J with respect to the actor parameters: 
 

J [▽ Q(s, |θ )| ]▽θμ ≈ Es ~ρt
β θμ a Q

s=s , a=μ(s |θ )t t
μ (6) 

                                                      [▽ Q(s, |θ )| ▽ μ(s|θ )| ]= Es ~ρt
β a a Q

s=s , a=μ(s )t t θμ
μ

s=st   
  

More details about this algorithm an be found in Lillicrap et al.​[1] 
 
3.3 Pseudo Code 
 
The above algorithm is also known as Deep Deterministic Policy Gradient (DDPG) algorithm. Its pseudo code can                 
be found below. 
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4. Experiments and Results 
 
In following sections we describe various experiments performed of applying reinforcement learning to the              
helicopter challenge. For the sake of simplicity we use average reward for describing the performance of agents,                 
where average reward is the ratio of total reward gained to number of steps in an episode. The code for all the                      
experiments can be found at ​https://github.com/aadilh/heli-deep-q​  . 
 
4.1 Random agent 
 
The first experiment we performed was with random non-learning agent. This agent picks a random value between                 
range [-1,1] for each action and sends it to the trainer. As expected this agent does not perform very well and crashes                      
helicopter. This agent crashes in 2-7 steps (0.2-0.7 seconds) resulting in very large negative reward as can be seen in                    
figure 3 and figure 4. 

 

 
Figure 3​. Number of steps completed by random agent for Task 0 before crashing. 

 

 
Figure 4​. Average reward gained by random agent for Task 0. 
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4.2 Weak-baseline agent 
 
This agent is also a non-learning agent which follows a predetermined hard-coded policy. This agent however keeps                 
helicopter in air for entire duration of an episode. The action taken by this agent is determined by the policy                    
described in following equations: 
 

 .0196y 0.0367v  0.7475q  0.02a0 =  − 0 −  x −  x +          ​(7) 
 .0185x 0.0322v  0.7904qa1
 =  − 0 −  y +  y         ​(8) 
 .1969qa2
 =  − 0 z         ​(9) 
     0.0513z 0.1348v  0.23a3
 =  +  z +        ​(10) 

where denotes ​ith​ action, are position of helicopter, is velocity of helicopter in ​i​ direction and is the ai    , ,  x y z      vi          qi   
quaternion of helicopter around ​i​  axis. 
 
Figure 4 shows the average rewards gained from the above hard coded policy that provided with the competition                  
software for different tasks. As expected, there is no increase in reward over time because there is no learning in this                     
agent. It can also be seen that different tasks have different rewards. This weak-baseline agent is important because                  
the policy of this agent is keeps the helicopter in air without crashing so it is good policy to initialize your learning                      
algorithm as we will see later in section 4.3. 

 

 
Figure 5. ​Average reward gained from a non-learning hard-coded policy agent for different tasks. 
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From figure 6 it can be seen that observation are very noisy and since actions depend linearly with observation in 
hard coded policy hence actions are also noisy. Hence to remove noise from observation we applied Kalman filter to 
observations which resulted in smoothening of actions to some extent (figure 7) but when process variance and 
measurement variance is increased further it results in helicopter crashing in about 90 steps (9 seconds) as can be 
seen in figure 8. 

 

Figure 6. ​Plot of positions, actions and reward for Task 1 of weak-baseline agent 
 

8 
 



 

 
Figure 7.​ Plot of positions, actions and reward for Task 1 of weak-baseline agent 

using Kalman filter denoising with Process variance 5x10​-3​ and Measurement variance 10​-3 
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Figure 8.​ Plot of positions, actions and reward for Task 1 of weak-baseline agent 

using Kalman filter denoising with Process variance 5x10​-11​ and Measurement variance 10​-5 
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4.2 Deep Deterministic Policy Gradient agent 
 
This agent is a learning agent based on the DDPG algorithm described in section 3. For the implementation of neural                    
networks Keras library with Tensorflow as backend was used. All experiments were run system with i7 processor                 
and 8GB RAM. For the sake of simplicity Ornstein-Uhlenbeck Process was not followed and hence noise was not                  
added to the predicted actions.  
 
Actor network consisted of 1 input layer, 2 hidden layers and 1 output layer. Input layer have 12 neurons                   
corresponding to 12 observation states. Hidden layers have 300 and 600 neurons respectively. Output layer have 4                 
neurons corresponding to 4 actions. Tanh activation was used for the output layer because the range of actions was                   
from -1 to 1. 
 
Critic network consisted of 1 input layer, 2 hidden layers and 1 output layer. Input layer have 12 neurons                   
corresponding to 12 observation states. Hidden layers have 300 and 600 neurons respectively. According to DDPG                
paper, the actions were not included until 2nd hidden layer of Q-network. Similar to actor network output layer had                   
4 neurons with tanh activation. Architecture of agent is depicted in figure 9. 
 
Since learning value functions using large, non-linear function approximators is unstable, hence weights used for               
initialization of parameters of neural networks play a very important role in convergence. That is why actor network                  
was pre-trained to learn weak-baseline agent’s policy function using 10​6 randomly generated samples of observation               
states. This significantly reduced number of episodes required to train the model. 
 

 
Figure 9.​ ​DDPG agent architecture 
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In order to obtain better results and smoother and steeper learning curve we experimented with transformed reward                 
as shown in figure 10. The modified reward was exponential function of the given reward. The learning curve of                   
DDPG agent for task 0 for both rewards can be seen in figure 11. As expected average reward start with average                     
reward of weak-baseline model described and increases continuously till it reaches convergence around -0.7 in               
around 500 episodes. The modified reward gives better results as shown in figure 11. 

 
ransformed reward (r ) xp(r /r )T ′

t = e t 0  ​(11) 
 

 
Figure 10.​ Transformed reward function for different values of r​0​. 

 

 
Figure 11.​ Learning curves of DDPG agent for Task 0. 
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From figure 12 it can be seen that all the observation states are almost zero and only action 4 (tail rotor collective 
pitch) is non zero.  

 

 
Figure 12.​ States, actions and reward of trained agent for task 0. 
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5. Conclusion and Future work 
 
This project explored the use of deep reinforcement learning on the domain of simulated helicopters. Unlike fixed 
wing aircraft, helicopter control is unstable; if corrective actions are not taken the helicopter will very quickly 
become unstable and fall from the sky. Helicopter control is a challenging reinforcement learning problem due to 
multitude of factors. Firstly, the state and actions spaces are both continuous, so there are an infinite number of 
possible state-action combinations. Secondly, the environment is noisy and stochastic; noisy observations and 
random wind affect how actions are applied and states are observed. Finally, the entire environment is not observed 
and non-stationary; the wind effects are not known to the agent. 
 
Future work for this project might include designing actor and critic neural networks more specific to generalized                 
helicopter challenge such as LSTMs which can model sequential nature of sensor data. 
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